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An interesting property of the Husimi function and its 
implications 

D M DavidoviC, D LaloviC and A R TanEiC 
Institute of Nuclear Sciences 'VinW, Laboratory for Theoretical Physics, 11001 Belgrade, 
PO Box 522, Serbia 

Received 25 July 1994 

Abstract. We prove that aiier the transformation ( 9 ,  p )  + (Aq,Ap), where 0 < A c 1, every 
Husimi function with appropriate renormalization remains in the class of Husimi distributions. 
We discuss some implications of this fact on the problem of phase distribution of a quantum 
state. We show that Wigner and P functions do not have this property. 

Recently, we  established a criterion enabling one to find out when a given function in phase 
space belongs to the class of Husimi dislzibutions [l]. The normalized function F ( q ,  p )  
belongs to this class if after the following change of variables 

the expression 

F ( + ,  P)ebj' (1) 

becomes positive definite with respect to p~ and p~ for some positive values of the 
parameter b. 

With the help of this criterion, we shall prove now that after the following 
transformations of Husimi distributions 

Dfq ,  P) + AzD(Aq. Ap) (0 e A < 1) 

the transformed functions remain in the class of Husimi distributions. Let us write expression 
(1) in the form 

(2) 

The expression in brackets is certainly positive definite, when the parameter b has the same 
value as the corresponding parameter which characterizes the initial Husimi distribution [I]. 
Namely, the function D(q, p )  is a Husimi distribution by assumption and, according to our 
criterion, D ( i ,  B)ebl' must be positive definite. Thus, the whole of expression (2) will be 
positive definite when the second factor on its right-hand side is positive definite. This 
factor may be written in the form 

AZD()+. ~ j j ) ~ @  = A~[D(A+,  ~~)eh~24 'eb~21 '+b-  q 2 .  

-2 (1 - A z )  
exp(bq (1 - A*)) = exp 
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Obviously. this expression is positive definite for 0 < A < 1, because the factor p I p 2  is 
positive. This terminates the proof. 

The main physical meaning of this result is that for every Husimi distribution the 
transformed distribution A2D(hq, Ap) begins to behave almost as a classical distribution 
function in phase space, when A is small. In the sense which will be explained shortly, the 
behaviour of i.’D(Aq, Ap) may be made as close to the classical behaviour as we wish by 
the choice of a sufficiently small value of the parameter A. We shall prove these statements 
by calculating the average value of a physical quantity f ( q ,  p ) ,  in aquantum state described 
by a Husimi distribution A2D(Aq, Ap).  The exact quantum mechanical average value f may 
be obtained by replacing a coordinate q and momentum p in the function f (4. p )  by the 
operators j and b, where [21 
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and calculating the expression 

f =  Jf(j,b)A’D(Aq.Ap)dqdp. (3) 

We assume that f may be developed in a power series. 
It is obvious that all the terms arising in (3) from differentiations are much smaller than 

the term which contains only algebraic operations between q and p .  independently of the 
order of operators, because every differentiation introduces one multiplication by the small 
parameter A. Owing to this fact, the leading term in the expression for the average value is 
exactly the classical term 

/ f ( 4 .  pP2D(hq .  AP) dq dp .  (4) 

All the other terms may be made as small as we wish by the appropriate choice of the 
parameter A. The quantum mechanical Husimi distribution A2D(Aq, h p )  may be considered 
to behave classically for small A, because it is a normalized non-negative function and 
consequently a true probability distribution: and because the average values of all physical 
quantities in such a state may be obtained in the classical way so that the error introduced 
by such a procedure may be made negligible. 

These conclusions may have some implications on the solution of the problem of 
distribution of phase in quantum mechanics for the case of a harmonic oscillator. It 
is convenient to describe in this case the system with the Husimi function having a 
parameter b = mw. The Husimi function with this parameter b is known as the Glauber 
Q function, which we will use in our discussion about the distribution of phase. The 
problem of the distribution of phase of a quantum state is one of the unsolved problems 
in quantum mechanics. In the standard formulation of quantum mechanics the problem 
arises simply because one cannot define a proper Hermitian operator which would be a 
quantum mechanical representative of the phase angle variable which in classical mechanics 
is canonically conjugated to the action variable [3,4]. In classical statistical mechanics the 
phase distribution can be derived simply from the probability distribution function in phase 
space as the corresponding marginal distribution 1.51. So, if D&, p)  is some classical 
phase-space distribution, then the distribution of phase is given as the following marginal 
distribution 
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Since h2D(hq, h p )  is practically a classical distribution, as shown above its distribution 

PA@) = A 2 ~ D ( ~ p c o s r p , h p s i n ~ ) p d p .  (6)  

of phase may be represented in the samc way, i.e. 

By introducing here the new variable r = hp, we see that 
, 

where D(q.  p )  is the initial Husimi distribution. 
The initial Husimi distribution and the transformed distribution describe different 

physical states. However, it seems plausible to assume that the transformation ( q ,  p )  + 
(hq, hp, does not change the distribution of phase. so that both initial and transformed 
Husimi distributions have the same distribution of phase. If this were so, expression 
(7) could be used as an exact definition of the distribution of phase for every quantum 
mechanical state, because expression (6) for the transformed distribution owing to its 
classical behaviour is correct, and the transformation (9, p )  --t (hq ,  hp) does not change 
the distribution of phase, by assumption. 

However, this assumption, made on intuitive grounds, cannot be proved, because there 
exists neither an exact nor generally accepted phase operator which would enable one to 
make a comparison of results. Therefore, the proposed formula (7) for distribution of phase 
cannot be treated as an exact definition; i t  is just one of the plausible candidates for the 
considered physical quantity. 

At first sight it may seem that the other phase-space distributions and quasi-distributions 
after the transformation (4 .  p )  + (hq, hp)  remain in their own class of functions, like the 
Hnsimi function. We shall now demonstrate, by an example, that this is not the case for 
Wigner and P functions. 

Let us consider the following density matrix (hereafter we put h = 1): 

Its Wigner function is 

We obtain, after the transformation (4. p )  --t ( i q ,  hp) ,  the normalized function 

a 

If this function was the Wigner function for small A, we could obtain from it the 
corresponding Husimi function in the standard way 161 and we would obtain the following 
function: 
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However, the function obtained cannot be a Husimi function because it assumes negative 
values for small A, from which we conclude that the transformed function (8 )  is not a Wigner 
function. In the same way, the same conclusion may be obtained for the P function. 

Due to the fact just shown and the fact that the Wigner function is not non-negative, the 
reasoning applied to the Husimi function in constructing the phase distribution cannot be 
applied to the Wigner function, although for every Wigner function the average values of 
physical quantities are calculated using the formula of the same structure as for hZ D(Aq,  h p ) .  
More concretely, the expression 
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I(c) = /W(pcosv,psinv)pdp 

cannot be treated as a marginal probability distribution because in general, it is not non- 
negative. 

To show this, let us consider the linear superposition of states: 

+(x)=an+n(x )+am~r , ( x )  IanIz+ tam12= 1 

where @n and +m are two eigenstates of the harmonic oscillator. The Wigner function for 
this case is 

1~.1~(-1)"~.(2r~) + I U ~ I ~ ( - I ) ~ L , ( ~ ~ ~ )  1~ = N ~ - Q ~ - P '  I 

where N is the normalization constant, Q = ,I&. P = (l/,L?)p, (Y = mw, r z  = Qz+ Pz, 
z =re@, and c = tan-'(P/Q). 

If we take the case n = 2, m = 0 and integrate W over the whole r. the result is (for 
az = ao = I/&): 

1 
I ( q )  / W(r,rp)rdr = G(l + &cos2p). 

Obviously I(p) is not a non-negative distribution. 
We see that the Husimi function has a privileged position among phase-space 

disiributions, with respect to the behaviour of functions after the considered transformations, 
and possible related physical implications. 
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